Introduction to
SQL Server & XML

Version 1.3
December 2016

hod dimitral

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

Table of contents

1 INTRODUCGCTION ..cuuiieiiiinneieniernnitrnceransrasstssseressessssssnssssssssasssssssssssssnssssnssssssssnssssnssssssssassssnssssssssnsssansesnsss 3
R Y O LY =1V = SOOI 3
1.2 PREREQUISITES ..vevvvruuueeeeerererasuneeeeessessssnneesessssssssnnseeesssssssssnnsessesssssssnnsesesssssssssnneesessssssssnnsesessssssssnnssssnnneesessssses 3
L3 STRUCTURE tuueeeieeettitieeeeeeertrettnaeeeeestesstanaesesesssssannsaeeessssssssnnsesessssssssnnseseesssssnssnnesessssssssnnneeesssessesssssssnnneesesessses 3

2 SQL SERVER 2016....c.ccuueieeerenierencrenneresceeaserenseressersssssnssssssssassssnsessssessssssnssssnsssasssssssssnsessnsesnssssnsesansenanes 3
2.1 INSTALLATION ereteeeeeeereeererererererererereeeeeeseseeeseseseseeeseeeesaesessesesesesssesesessssesesesssssesesesesesesesesesssesssssasssssesssssssssssssnsens 4
2.2 MICROSOFT SQL SERVER MANAGEMENT STUDIOeeeeereuruuieeeeereteunniaeeeeerrennnnseseeesesssmnnssseesssssssnnsseseserssssmnanaeeeeennes 8

3 SAIMPLE DATA ...ciiieiiteiiieeiitaeteniernsitsnsstassstassssssessssesassssnsssssssssssssssssasssssssssnssssssssnsssansesassssassssnsesnnssanse 11
R A 0 7N 7 RPN 12

4 EXAIVIPLES ..o ieieeireieenetetenreeerenseecsansescrsssessesssassesssassassssssassasssnssssssnssessssssassssssassssssassessssssasssssanssnnses 12
L O Y R 12

4.1.1 RAW . ..ottt ettt ettt ettt ettt ettt ettt ———b—aaatb—aab—aba————————————,araraaarareien 13
A 1 U 1 O Nt 15
4.1.3 L2 I PP 17
4.2 XIMIL DATA TYPE METHODS ...eevtvutuueeeeeeeersstieeeeessresssseeeeeessssssssnesesssessssnneesessssssssnnseeessssssssseeesessssssnssneeeessssssnnns 19
4.2.1 Methods QUEIrY QNG VAIUE..............ccooueeeieieeieieieeeee ettt sne e en 19
4.2.2 [L= Lo e =3 (K SOT U T O T T 22
4.2.3 [L= Lo o W Te o =X OOt 23

E B BV, -2 i o Yo Yo [1 Lo Yo 1 VOSSR 24
.3 DIMIL FOR XMLttt bbb bbb b s as s baaasaaaaaasasssasasasesesesasesssessseesssasesesesesaseseseseeeesesees saesanssnnsnsnnnen 25
4.3.1 Y= ¢ SRR 25
B A [=1 (=PSRN 26
4.3.3 1EPIACE VAIUC Of ..ttt ettt ettt s 26
4.4 XQUERY FUNCTIONS tvvtuueeeeeiretrununeeeeessressssnneeesssssssssstesessssssssmneeeeessssssssntesesssssssssmeeeessssssssmeesessssssnssmneeesnseeseens 27
S N Yo | Hole] [V 1 T U PU N 27
Ny I Yo | RV o T o | o [SRS 27

5 EPILOGUE......ccuiteiieeirtenereeereeerennetenseresesensesessesnssssnsssensssasssensesessessssssnsssessssassssnsesassesassesnsssnnsssnsesansennn 28

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

1 Introduction

This compendium gives a short introduction to SQL Server 2016 and its facilities for database
administration. We discuss installing SQL Server 2016 and using the Microsoft SQL Server
Management Studio. After that, there is an introduction to some Microsoft specific XML
features. All the examples are tested on SQL Server for Windows on Windows 8.1 64-bit
platforms, but they should work in a similar manner on any platform.

The latest version of this compendium is available at
http://coursematerial.nikosdimitrakas.com/sqlserverxml/ where all other relevant files can
also be found.

1.1 SQL Server

SQL Server is Microsoft's major relational DBMS. It has certain similarities to Access, which is
a smaller relational DBMS included in Microsoft Office. Microsoft has decided not to
implement any XML support according to the latest SQL standards in SQL Server. Instead,
Microsoft specific extensions have been designed, that add corresponding XML features to
the ones described in the SQL standard. These Microsoft specific extensions are named
SQLXML, while the XML part of the SQL standard goes under the name SQL/XML. These two
are not to be confused with one another.

SQL Server has a set of tools for working with databases and for managing SQL Server
systems. The Microsoft SQL Server Management Studio (Management Studio for short)
serves as the main hub for performing most tasks. It has several wizards and support for SQL
gueries and scripts. There are several other tools bundled with SQL Server, but they are not
relevant for this introduction.

1.2 Prerequisites

It is required that the reader is familiar with database administration and SQL and has a good
understanding of XML. This introduction focuses on SQL Server specific XML features, so
most basic database concepts will not be explained in detail. All the examples can be
executed in any interface tool for SQL Server but the recommended tool is the Management
Studio (which is bundled with SQL Server).

1.3 Structure

In the next chapter we will take a quick look at the installation and configuration of SQL
Server and at the Management Studio. After that we will look at the sample data used in the
examples to come. In chapter 3.1 we will go through several examples using the sample data
and SQL Server's XML features.

2 SQL Server 2016

SQL Server 2016 is available as a free trial by Microsoft. For students and faculty at most
universities, SQL Server and other Microsoft products are available for free for non-
commercial use through Microsoft Imagine (formerly known as DreamSpark or Microsoft
Developers Network Academic Alliance).

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

2.1 Installation

Start by downloading the appropriate installation file. This compendium is based on SQL
Server 2016 Enterprise Edition for Windows 8.1 x64, but Developer, Standard or Express
Edition on any Windows should work just as well with some minor visual differences. SQL
Server 2016 requires Windows 8 or later and does not support any 32-bit versions.

Run the executable setup.exe to start the installation. The SQL Server Installation Center will
soon appear. In the menu on the left you can choose an activity. If you choose "Installation",
then you will be presented with alternative installation options.

Start a new installation by selecting the option "New SQL Server stand-alone installation or
add features to an existing installation" under Installation.

o SQL Server Installation Center M
Planning h New SOL Server stand-alone installation or add features to an existing installation
Installath Launch a wizard to install SOL Server 2016 in 2 non-clustered environment or to add features to an exsting SQL Server 2016 instance.
Maintenance 477 Install SQL Server Management Tooks
Tooks . _)‘A Launch a download page that provides a link to install SQL Server Management Studio, SQL Server command-hine utilities (SQLCMD and BCP), SOL Server
PowerShell provider, SOL Server Profiler and Database Tuning Advisor. An internet connection is required to install these tools.
Resources
Advanced g/ Install SOL Server Data Tools
2F Launch a download page that provides a link to install SQL Server Data Tools (S50T). 5507 provides Visual Studio integration including project system
Options support for Azure SOL Database, the SOL Server Database Engine, Reporting Services, Analysis Senvices and Integration Services. An intemnet connection is

required to install S5DT.

h MNew SOL Server failover cluster installation

Launch a wizard to install a single-node SQL Server 2016 failover cluster,

* Add node to a SQL Server failover cluster

Launch a wizard to add a node to an existing SQL Server 2016 failover cluster.

== Upgrade from s previous version of SQL Server

Launch a wizard to upgrade a previous version of SOL Server to SQL Server 2016

h MNew R Server (Standalone) installstion

Microsoft SQL S - 2016 Launch a wizard to install R Server (Standalone) on a Windows machine. This is typically used by data scientists as a standalone analysis server or as a SOL

Server R Services chent.

The installation wizard will launch and it may take a few minutes before it completes its
preparations. You may also have to press "OK" a few times. Eventually, you will be asked to
specify a product key (it may be already filled in) or choose Evaluation and go to the next
step where you must accept the license terms in order to continue. Press "Next" until you
come to the step Install Rules. The wizard will work for a while and then hopefully will show
a summary that all the operations passed. If the wizard jumps automatically to the “Feature
Selection” step everything has probably gone well.

Introduction to SQL Server and XML

version

1.3 December 2016

-]
Install Rules

can continue.

Product Key
License Terms
Global Rules
Product Undates
Install Setup Files
Install Rules
Feature Selection
Feature Rules
Feature Configuration Rules
Ready to Install
Installation Progress
Complete

SQL Server 2016 Setup

Operation completed. Passed: 5. Failed 0. Waming 0.

Setup rules identify potential problems that might occur while running Setup. Failures must be corrected before Setup

Skipped 0.

Show details >>
View detailed report

< Back [Next > | | Cancel |

=E |

nikos dimitrakas

Go to the “Feature Selection” step. In this step you must select which features to install. You
can install what you want, but the Database Engine Services must be installed. Here is our

configuration.
- SQL Server 2016 Setup [=[o .|
Feature Selection
Select the Enterprise features to install.

Product Key Features: Feature description:
liceme Tenns Instance Features Includes the Database Engine, the core service
Global Rules [Database Engine Services for storing, processing and securing data. The
Product Updates [15QL Server Replication D '; Engine provides c d"k‘o‘““.‘.'"d

I - rap P g and aiso p
Install Setup Files a E s"“;““ ": m“b’_"]m for Search || fich supportfor sustaining high availabilty. The *
Pitd e L Fub- ma.n Serr_\ant-: ractions for Search || oy pace Engine also provides support for the

[T] Data Quality Services utility control point in the SQL Server Utility.
Feature Selection [7] PolyBase Query Service for Extemal Data Only Database Engine Services and Analysis
Feature Rules [] Analysis Services ud
Instance Configuration [Reporting Services - Native P isites for selected f

Shared F r

Server Configuration [jd R ;:l::‘[Standalone) | Already installed:
Database Engine Configuration Windows PowerShell 3.0 or higher

Feature Configuration Rules
Ready to Install

Installation Progress
Complete

["] Reporting Services - SharePoint
[C] Reporting Services Add-in for SharePoint Product
[[] Data Quality Client
[Client Tools Connectivity
[Integration Services
[_] Client Tools Backwards Compatibility
[] Client Tools SDK
[v] Documentation Components
[[] Distributed Replay Controller
[[] Distributed Replay Client
[+ SQL Client Connectivity SDK
[C] Master Data Services
Redistributable Features

Al m >

[seectan || unselectan |

Instance root directory:
Shared feature directory:

Shared feature directory (x86):

Microsoft Visual Studio 2010 Redistributables
Microsaft Visual Studio 2010 Shell

| To be installed from media:
Microsoft .NET Framework 4.6 (may require reboc

| <] " »

-Dilk Space Requirements

Drive C: 1280 MB|required, 36807 MB available ~

|C:\Progum Files\Microsoft SOL Server\

C:\Program Files (x85)\

C:\Program Files\Microsoft SQL Server\

Microsoft SOL Server\

< Back ||_u,m> || concer

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

Note that in older versions an option to install “Management Tools” was available in the
“Feature Selection” step. Starting with SQL Server 2016, the Management Tools must be
installed separately from the main menu.

As soon as you press "Next" the wizard will check that your configuration and your system
are compatible and consistent. Go to the next step to configure the instance to be installed.
The defaults are just fine:

- SQL Server 2016 Setup ELIE-

Instance Configuration

Specify the name and instance ID for the instance of SQL Server. Instance ID becomes part of the installation path.

Product Key ®) Default instance

License Terms Named instance:

Global Rules

Product Updates

Install Setup Files Instance [D: MSSQLSERVER

Install Rules

Feature Selection

Famtion Rulax SOL Server directory: C:\Program Files\Microsoft SQL Server\MSSOL13 MSSCQLSERVER
Instance Configuration

Server Configuration

Installed instances:

Database Engine Configuration Instance Name Instance ID Features Edition Version
MS5SCLSERVER MSS0L12.MSSOLSERVER SQLEngine Enterprise 12.2.5000.0
Feature Configuration Rules >
«<Shared Components» SSMS, Ady_SSMS, Conn 12.2.5000.0
Ready to Install
Installation Progress
Complete
< Back Next > Cancel

In the next step you must configure the system services. You can specify which account
should be used for starting each service. We use the same account for both services, but you
can have separate accounts for each service. Just make sure the accounts have high enough
permissions. During this step you can also configure the default collation for the server. The
default (Latin1 general case-insensitive accent-sensitive) will be sufficient for this
introduction.

- S0l Server 2016 Setup [=[o N

Server Configuration

Specify the service accounts and collation configuration.

Preduct Key Senvice Accounts | Collation
License Terms

Microsoft recommends that you use a separste account for each SQL Server senvice
Global Rules i . e ’Q

Product Updates Service Account Name Password Sun up T__,pe —
Install Setup Files SO Server Agent |NT Service\ SOLAentSMSSCLSERVER v | Manual v
install Rules SOL Server Datsbase Engine NT Service\ MSSCLSMSSOLSERVERT Automatic | v
Feature Selection SOL Server Browser NT AUTHORITY\LOCALSERVICE |Automatic | v |

Feature Rules
Instance Cenfiguration Grant Perform Volume Maintenance Task privilege to SQL Server Database Engine Service
' Thas prvilege enadles instant file iNMmalization by avouding erong of data es. This may lead to informaton declosure by allowin:
Server Configuration This peivil o fi i by avoid f o This may lead to informat i
deleted content to be accessed.

Click here for detaily

Database Engine Configuaaticn
Festure Configuration Rules
Ready to Instsll

Installation Progress

Complete

< fack Next > Cancel

Introduction to SQL Server and XML

version 1.3 December 2016

nikos dimitrakas

o~

Server Configuration

SQL Server 2016 Setup

Spexcify the service accounts and collation configuration.

Product Key

License Terms

Global Rules

Product Updates

Install Setup Files

Install Rules

Feature Selection

Feature Rules

Instance Configuration
Server Configuration
Database Engine Configuration
Feature Configuration Rules
Ready to Install

Installation Progress

Complete

Service Accounts || Collation
Database Engine:

[sQL_Latin1_General CP1_CI_AS

Latin1-General, case-insensitive, accent-senzitive, kanatype-insensitive, width-intensitive for Unicode Data, SOL Server Sort

Crder 52 on Code Page 1252 for non-Unicode Data

<Back || Mext>

[.|

Customize...

Cancel

In the next step you can decide the authentication mode for users that connect to the SQL
Server. Windows authentication mode requires that a user must have a Windows account in
order to access the database server. With mixed mode, users can be created directly in the
database server and are not required to have a Windows account. Users with Windows
accounts can still access the database server. Mixed mode is more flexible, but perhaps less
secure. You can also specify which Windows users should be administrators for SQL Server.
We have added all Windows administrators to be administrators for SQL Server. You may
want to add the current user or other users based on your needs.

-
1=

SOL Server 2016 Setup

Database Engine Configuration

Specify Database Engine authentication security mode, administrators, data directories and TempDE settings.

Product Key

License Terms

Global Rules

Product Updates

Install Setup Files

Install Rules

Feature Selection

Feature Rules

Instance Configuration
Server Configuration
Database Engine Configuration
Feature Configuration Rules
Ready to Install

Installation Progress

Complete

Server Configuration | Data Directories | TempDB | FILESTREAM
Specify the authentication mode and administrators for the Database Engine.
Authentication Mode
Windows suthentication mode
&) Miced Mode (SQL Server authentication and Windows authentication)
Specify the password for the SOL Server system administrator (sa) account.
Enter password sessenes

Confirm password ' sensnes|

(=l

Specify SQL Server administrators

Add Current User Add. Bemove

SQL Server administrators have unrestricted

access to the Database Engine.

« Back Mext »

Cancel

After that, the wizard will once again check that your configuration is good, before starting
the actual installation. The wizard will present a summary of the configuration and the
installation can be started by pressing "Install".

Introduction to SQL Server and XML

version 1.3 December 2016

-
=]

Ready to Install

SOL Server 2016 Setup

Werify the SOL Server 2016 features to be installed.

Product Key

License Terms

Global Rules

Product Updates

Install Setup Files

Install Rules

Feature Selection

Feature Rules

Instance Configuration
Server Configuration
Database Engine Configuration
Feature Configuration Rules
Ready to Install

Installstion Progress

Ready to install SOL Server 2016:

= Summary
Edition: Enterprise
Actiore Install (Product Update)
~ Prerequisites
= Already installed:
Windows PowerShell 3.0 or higher
Microsoft Visual Studic 2010 Redistributables
Microsoft Visual Studso 2010 Shell
= To be installed from medix
Microseft NET Framewerk 4.6 (may require reboeot)
=1 General Configuration
= Features
Database Engine Services
Client Tools Connectivity
Documentation Components

BE |

nikos dimitrakas

SO Client Connectivity SDK
= Instance configuration
Instance Mame: MSSQLSERVER
Imssamea I LASEOE CERUEDY
Configuration file path:

Complete

C:\Program Files\Microsoft SOL Server\130\Setup Bootstrap\Log\20161207_123633\ConfigurationFile.ini

< Back Install Cancel

The installation will take a few minutes.

During the installation the Windows services configured earlier were created:

File Acion Yiew Help

= o 0 i Hrp rmnw
Senaces (Local) J Services (Local)
| Applcation Mformation Mame = Deserption Saatus Startup Type Log Onds
| SQL Server (MSSQLSERVER) Provides storage, processing and controlied sccess of data, and rapid ransaction... Running Automatic administrator
| Start the service A SOL Server Agent (MSSQLSERVER) Executes jobs, monitors SOL Server, fires alerts, snd allows sutomation of some a.. Manual \administrator
o S0L Server Browser Provides SOL Server connection information to clent computers. Disabled Local Service

i Description: SOL Server VS5 Witer Provides the interface to backup/restore Microsoft SOL server through the Wind... Running Automatic Local System

Extended [Standard |

Since the Management Tools were not installed together with the rest of the server
features, we have to go back to the main menu and select “Install SQL Server Management
Tools” from the “Installation” option. Download and install the latest version (16.5.1 as of
December 2016).

2.2 Microsoft SQL Server Management Studio

The Management Studio is a graphical client where you can manage your SQL Server and
execute SQL statements. This is the recommended tool for working with SQL.

When you start the Management Studio, you will be asked to connect to a server. The
default is to connect to the local server (it may be (local), localhost or the computer's name)
using the current Windows account. This is probably what you want.

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

ad Connect to Server -
SQL Server
Server fype :Daabase_Enqn_e_ v
Server name flocal) v|
Ashenticaton [Windows Ahentication vl
[[Comea |[Concel |[Heb |[Opmons>> |

Once connected, you will see a tree structure on the left, representing the different objects
on the connected server.

g Microsoft SQL Server Management Studio (Administrator) [= o
File [Edit View Debug Tools Window Help

Piglr i (5 G| D Newuery | LMD S| 4 B9 -0 -0l (s b e

Object Explorer * B x

Connect= 4/ % m [3] .5
S (ocal) (SQL. Server 1202000 - NIKOSSCSLAPTOPwnikd
+ (3 Databases

+ (3 Security
+ (2 Server Objects
+ (3 Replication
3 AlwaysOn High Availability
+ (3 Management
+ [Integration Services Catalogs
b SQL Server Agent (Agent XPs disabled)

Right-click on any object in order to see the available options. The Management Studio
offers several wizards for performing tasks.

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

On the right side of the window, you can open one or more query tabs. Each query tab is
associated with a database. The default is the system database "master". The connected
database is indicated in the toolbar and in the status bar of the query tab.

48 SQLQuery1.sql - (local).master (NIKOSSCSLAPTOP\nikos (52)) - Microsoft SQL Server Management Studio (Administrator) |;E-
file [Edit View Query Project Debug Tools Window Help

fudr - (D b @ | Newwey (R thS| & 2B |9 -0 --Cl g b e
i 80) | master +|| ¥ Execute P Debug ® o 35 = G|V | QNG QI=S 2L
[oneciopoer -3 x CUTEVET——— |
Connect~ %/ 3 & T 2] .4 +
= [B (local) (SQL Server 12.0.2000 - NIKOSSCSLAPTOP\nike &
+ (3 Databases
+ [Security

+ (3 Server Objects
+] (3 Replication
(3 AlwaysOn High Availability
+ [Management
+ (3 Integration Services Catalogs
b SQL Server Agent (Agent XPs disabled)

100% = < »
<| [T » [l Connected. (1/1) (local) (120 RTM) NIKOSSCSLAPTOP\nikos (52) master 00:00:00 0O rows

If you execute a query or a script (by pressing the Execute button, F5 or Ctrl + E), you will see
the result in the lower half of the query tab.

£ SQLQuery1.sql - (local).cardb (NIKOSSCSLAPTOP\nikos (52))* - Microsoft SQL Server Management Studio (Administrator) |;E-
File [Edit View Query Project Debug Tools Window Help

Pyl (D | 2 Newovey (pB IS G & 2|9 - -0 (i) b e I
i 9 4 | |cardb || ¥ Execute b Debug B o 30 al S [P | NSO S 2IEE A<
i AR sccisa-seroroics 62 IR
Connect> %/ % m [2] .5 SELECT pid, name FROM Person|)
= | (local) (SQL Server 12.0.2000 - NIKOSSCSLAPTORr ~ 100% < -
=1 (3 Databases : F; -
% (3 System Databases T Results | |y Messages
(3 Database Snapshots pid name
|4 cardb 1 1 | John Higgins
(3 Security =0 2 2 Stephen Hendry
3 Server Objects 3 3 Matthew Stevens =
+ (3 Replication 4 4 Ronnie O'Sullivan =
+ 3 AlwaysOn High Availability 5 5 Ken Doherty
(3 Management 6 6 Steve Davis
(3 Integration Services Catalogs 7 7 Peul Hunter ;
(# SQL Server Agent (Agent XPs disabled) o B 8 Nail Rohartenn
<] il > @ Query executed successfully. (local) (120 RTM) NIKOSSCSLAPTOP\nikos (52) cardb 00:00:00 8 rows

The Execute command will execute the selection and if no selection was made, it will
execute the entire content of the query area.

10

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

3 Sample Data

In this chapter we will take a look at the data that we will use in all the examples to follow.
We will use a database with both relational data and XML data. That is, a database with
tables, columns, keys, integrity constraints, etc. but with a couple of columns containing XML
documents (each cell being an XML document).

i w oI
:;:la('e Title ¥ Name
Translations Originallanguage Street
Book Genre ¥ Book City
= ¥ Author PostalCode
Country
¥ 10

Name
Info

The columns Edition.Translations and Author.Info contain XML according to the following
XML Schemas. The rest of the columns are defined as VARCHAR and INTEGER. The only
column that allows NULL is the column Book.Genre.

XML Schema for documents in Edition.Translations:

<?xml version="1.0"?>
<schema xmins="http://www.w3.0rg/2001/XMLSchema">
<element name="Translations">
<complexType>
<sequence>
<element name="Translation" minOccurs="0" maxOccurs="unbounded">
<complexType>
<attribute name="Language" type="string" use="required"/>
<attribute name="Publisher" type="string" default="N/A"/>
<attribute name="Price" type="integer" use="required"/>
</complexType>
</element>
</sequence>
</complexType>
</element>
</schema>

The value of the attribute Publisher must correspond to a value in the column
Publisher.Name. This kind of constraint could be implemented as a set of triggers.

11

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

XML Schema for documents in Author.Info:

<?xml version="1.0"?>
<schema xmlins="http://www.w3.0rg/2001/XMLSchema">
<element name="Info" type="InfoType"/>
<complexType name="InfoType">
<all>
<element name="Email" type="string"/>
<element name="YearOfBirth" type="integer"/>
<element name="Country" type="string"/>
</all>
</complexType>
</schema>

The entire script for creating and populating the database can be found on
http://coursematerial.nikosdimitrakas.com/sqlserverxml/

The script can be run in the Management Studio. It creates a database called bookdb.

3.1 XML data type

SQL Server 2016 has a data type called XML (introduced in SQL Server 2005). This data type
can be typed or untyped. The untyped XML data type accepts any well-formed XML or
fragment, while the typed XML data type is associated with an XML Schema and allows only
valid XML documents. There is no real support for DTDs, but inline DTDs are allowed and can
be used to provide defaults. Any schema to be used, must first be registered as a SCHEMA
COLLECTION.

In the provided database script, there is no validation.

4 Examples

In this chapter we will go through some examples using SQL Server specific XML features. All
the examples in this chapter assume that the database has been created and that there is a
connection to it.

4.1 FOR XML

In order to create XML as output from an SQL SELECT statement, SQL Server adds an extra
clause after the ORDER BY clause. The FOR XML clause can be used in different modes and it
transforms the result of the SQL statement into an XML document or fragment. The result is
serialized by default, but the keyword TYPE can be used in order to keep the result as a value
of the XML data type. The three modes (RAW, AUTO and PATH) are described in the
following sections.

12

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

4.1.1 RAW

If we want to create an XML document with all the publishers, we could use the RAW mode
which by default will create one element per row and one attribute per column.

SELECT *
FROM publisher
FOR XML RAW ('Publisher'), ROOT ('Publishers')

The result looks like this:

<Publishers>
<Publisher name="ABC International" street="7th Bear St."
city="Berlin" postalcode="44500" country="Germany" />
<Publisher name="Addison" street="2nd Monet St."
city="Toulouse" postalcode="98700" country="France" />

</Publishers>

The element names and attribute names will have the specified case, and the default is
lower case. The following example shows how we can change the case or even the entire
name.

SELECT CitY, NamE, Country AS Land
FROM publisher
FOR XML RAW ('Publisher'), ROOT('Publishers')

This will give us the following result:

<Publishers>
<Publisher CitY="Berlin" NamE="ABC International" Land="Germany" />
<Publisher CitY="Toulouse" NamE="Addison" Land="France" />

</Publishers>

The root element is created through the use of the optional keyword ROOT. The name of the
root element can be specified as in the previous examples, but if not, the default is "root".
Omitting the keyword ROOT will give us a fragment as the result (a sequence of Publisher
elements in the previous examples). After the keyword RAW we can specify the element
name for each row. The default is "row".

If we would prefer to have elements instead of attributes for the columns, we can specify
the keyword ELEMENTS. Here is an example that also illustrates the absence of ROOT and
element names.

SELECT Name, City, Country

FROM publisher
FOR XML RAW, ELEMENTS

13

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

The result is an XML fragment with one "row" element for each row and three subelements
for the three selected columns:

<row>
<Name>ABC International</Name>
<City>Berlin</City>
<Country>Germany</Country>

</row>

<row>
<Name>Addison</Name>
<City>Toulouse</City>
<Country>France</Country>

</row>

Now, if a column is already XML, we may not get the result that we would want using the
RAW mode. Consider the following example where we want to have one element per
author.

SELECT name, info
FROM author
FOR XML RAW ('Author'), ROOT ('Authors')

The column info is already XML so it will not be added as an attribute, but rather, as a
subelement. The column name is "info" so a subelement "info" will be created. This will
unfortunately lead to two subsequent "info" elements:

<Authors>
<Author name="John Craft">
<info>
<Info>
<Email>jc@jc.com</Email>
<Country>England</Country>
<YearOfBirth>1948</YearOfBirth>
</Info>
</info>
</Author>
<Author name="Arnie Bastoft">
<info>
<Info>
<Email>bastoft@frei.at</Email>
<Country>Austria</Country>
<YearOfBirth>1971</YearOfBirth>
</Info>
</info>
</Author>

</Authors>

14

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

One way to avoid this is to have an unnamed column in the SELECT clause. That means that
it needs to be generated either with a nested statement or with a function/method.

SELECT name, (SELECT info FROM author a WHERE a.id = author.id)
FROM author
FOR XML RAW ('Author'), ROOT ('Authors')

The following also produces the same result:

SELECT name, info.query('/')
FROM author
FOR XML RAW ('Author'), ROOT ('Authors')

4.1.2 AUTO

The AUTO mode is very similar to RAW. It will also create one attribute per column and one
element per row, but the element name will be the same as the table name (in the case
specified in the FROM clause). It can also be configured for elements and to include a root
element. AUTO differs from RAW when more tables are involved in the SELECT clause. Then
each table will get a new element, thus possibly creating several levels of subelements.

If we want to get an XML document with all the books and their respective editions, we can
use the following statement.

SELECT Book.Title, Edition.Year
FROM Book, Edition

WHERE Edition.book = Book.id

FOR XML AUTO, ROOT ('Books')

This will create a root element Books with one Book element for each book. Each Book
element will have one Edition element for each edition. The join condition will, of course,
eliminate any book without editions. The result looks like this:

<Books>

<Book Title="Archeology in Egypt">
<Edition Year="1992" />
<Edition Year="1994" />
<Edition Year="1999" />

</Book>

<Book Title="Contact">
<Edition Year="1988" />

</Book>

<Book Title="Database Systems in Practice">
<Edition Year="2000" />
<Edition Year="2002" />

</Book>

</Books>

15

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

How does SQL Server know to nest Edition elements inside Book elements? The order of the
columns in the SELECT clause decides how the elements will be nested. But only if
subsequent rows have the same values in the outer level. So the ORDER BY clause may affect
the result. Try the following statement with and without the ORDER BY clause.

SELECT Year, Title

FROM Book, Edition

WHERE Edition.book = Book.id
ORDER BY year

FOR XML AUTO, ROOT ('Books')

And how about this?

SELECT Title, Year

FROM Book, Edition

WHERE Edition.book = Book.id
ORDER BY Year DESC

FOR XML AUTO, ROOT ('Books')

How can we order the editions without destroying the nesting?

When many columns appear in the SELECT clause, it is still the order in which each table first
appears in the SELECT clause that decides the nesting. Consider the following example:

SELECT Title, Year, Genre, Price
FROM Book, Edition

WHERE Edition.book = Book.id

FOR XML AUTO, ROOT ('Books')

The first and third columns come from the table book, while the second and fourth columns
come from the table edition. But the element creating and nesting is only affected by the
first appearance of each table. Thus, the table book was first and the table edition was
second. Any extra columns appearing later in the SELECT clause will be placed in the existing
element corresponding to the relevant table.

The AUTO mode is completely dependent on the tables that appear in the FROM clause. So if
we want to create a nesting that is not based on tables, we have to work around that. How
about creating an XML document with books per genre? Since the genre and title are in the
same table, AUTO mode would place them on the same element level. With the following
statement, we let AUTO mode see two tables, which creates two element levels.

SELECT Name, Title

FROM Book, (SELECT DISTINCT genre AS name FROM book) AS Genre
WHERE genre = name

ORDER BY name

FOR XML AUTO, ROOT ('Books')

16

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

The first column in the SELECT clause comes from the table Genre, so Genre elements are
created under the root element. The second column in the SELECT clause comes from the
table Book, so the Book elements will be subelements to Genre elements. Here is the result:

<Books>

<Genre Name="Educational">
<Book Title="Oceanography for Dummies" />
<Book Title="European History" />
<Book Title="Musical Instruments" />
<Book Title="Oceans on Earth" />
<Book Title="Archeology in Egypt" />
<Book Title="Database Systems in Practice" />
<Book Title="Music Now and Before" />

</Genre>

<Genre Name="Novel">
<Book Title="Midsommar i Lund" />
<Book Title="Varen vid sjon" />
<Book Title="The Beach House" />

</Genre>

<Genre Name="Science Fiction">
<Book Title="Contact" />
<Book Title="The Fourth Star" />

</Genre>

<Genre Name="Thriller">
<Book Title="Dé&dliga Data" />
<Book Title="Misty Nights" />

</Genre>

</Books>

4.1.3 PATH

Working with RAW and AUTO modes can be quite challenging when we want to create
structures that combine attributes and elements and have several levels of arbitrary nesting.
PATH mode is the most flexible mode of the FOR XML clause. It allows us to fully control the
XML structure and to place each value at the level we want. One drawback is that it does not
have automatic grouping when nesting like the AUTO mode has. But that can be handled
with nesting SELECT statements appropriately.

In PATH mode, the column names and aliases define where in the generated structure
different values should be placed. Consider the following example.

SELECT name AS "@Name", city AS "Location/@City", country AS "Location/@Country"
FROM publisher
FOR XML PATH ('Publisher'), ROOT ('Publishers')

This will create a root element Publishers with one Publisher element for each row. The

values of the three columns in the SELECT clause will be placed in the nodes (relative to the
Publisher element) specified by the paths in the column aliases. Here is the result:

17

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

<Publishers>
<Publisher Name="ABC International">
<Location City="Berlin" Country="Germany" />
</Publisher>
<Publisher Name="Addison">
<Location City="Toulouse" Country="France" />
</Publisher>

</Publishers>

Grouping subelements (as AUTO mode does) requires that we nest SELECT statements. If we
want to get all the books per genre, we may write the following statement.

SELECT name AS "@Name", (SELECT Title

FROM Book

WHERE genre = g.name

FOR XML AUTO, TYPE)
FROM (SELECT DISTINCT genre AS name

FROM book
WHERE genre IS NOT NULL) AS g
FOR XML PATH ('Genre'), ROOT ('Books')

In the outer SELECT statement we work with one table named g. This table contains all the
genres. In the SELECT clause we have one column to be placed as a Name attribute in the
Genre element, and another column (the nested statement) that is unnamed, which means
that it should be the content of the Genre element. It is also possible to specify that a
column should become the content of the Genre element by using the column alias "*".

The result of the previous statement looks like this:

<Books>
<Genre Name="Science Fiction">
<Book Title="Contact" />
<Book Title="The Fourth Star" />
</Genre>
<Genre Name="Thriller">
<Book Title="Misty Nights" />
<Book Title="Dddliga Data" />
</Genre>

</Books>
It is very important that the result of the nested statement is XML. That's why we use the

TYPE keyword. If the result had been a serialized XML (as VARCHAR), then it would have
become the text node of the Genre element and not subelements.

18

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

4.2 XML data type methods

SQL Server offers a handful of methods that can be used on objects of the data type XML.
The methods query, value, exist and nodes provide similar functionality to the SQL
standard's functions XMLQUERY, XMLTABLE and XMLEXISTS. The method modify addresses
DML for XML, which the SQL standard has yet to address.

4.2.1 Methods query and value

Using XQuery on an XML object can be done with the methods query and value. The first
returns XML (either a fragment or a document), while the second returns a singleton value
of a basic data type.

If we want to get the name and country of each author, we could use the following
statement.

SELECT name, info.value('(//Country)[1]', 'VARCHAR(20)")
FROM author

The value method requires that the XQuery expression (often just an XPath expression) is
statically a single node. This means that in most cases (even when we know that the result is
one node), we need to add the predicate [1] after the expression (which we place inside
parentheses). The second argument of the method is the data type of the result (as a string).

The above statement returns the content of the first Country element. Compare it with the
following, which returns the first text node under the Country element:

SELECT name, info.value('(//Country/text())[1]', 'VARCHAR(20)")
FROM author

In this case the result would be the same since the Country element only has one text node.

John Craft England
Arnie Bastoft Austria
Meg Gilmand Australia
Chris Ryan France

But consider the following example:

DECLARE @x XML,

SET @x = '<A>heyallyou'

SELECT @x.value('(//A)[1]', 'VARCHAR(20)")
SELECT @x.value('(//A/text())[1]', 'VARCHAR(20)')
SELECT @x.value('(//A/text())[2]', 'VARCHAR(20)')
SELECT @x.value('(//A//text())[2]', 'VARCHAR(20)")

The first SELECT returns the content of the first A element, while the second one returns the
first text node under the A element. The third SELECT returns the second text node directly

19

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

under the A element, and the fourth one returns the second text node inside the element A
(which is the text node of the B element).

The method query is similar to value, but it always returns XML, so it does not need a second
parameter. The following two statements, therefore, do not produce the same result:

SELECT name, info.query('//Country')
FROM author

SELECT name, info.query('//Country/text()')
FROM author

The first one returns the Country element, while the second one returns the text node under
the Country element. The result may appear to be the same as when using the method
value, but its data type is different, which is indicated by the blue color and underline in the
Management Studio:

: SQLQuery1.sql - (local).bookdb (NIKOSSCSLAPTOP\nikos (52))* - Microsoft SQL Server Management Studio (Administrator) Hﬂ-
Eile Edit View Query Project Debug Jools Window Help
Pl T o e | 2 NewQuey (5 ERED 55 8 DB - - -0 (] b o SIS <
i 44 4} | |bookab -] Y Execute P Debug B 00 8 [TV |QGQIZS 2 EEG:
Connect~ %/ %) = T] SELECT name, info.query('//Country’
= [(local) (SOL Server 12.0.2000 - NIKOSSCSLAPTOP\nike] FRENY: sutior
AR Dt ~SELECT name, info.query('//Country/text()’ —
5 0l Security FROM author
& 3 Server Objects -
+ 3 Replication 0% ~|<

[AlwaysOn High Availability
+ [Management
& 3 Integration Services Catalogs
& SQL Server Agent (Agent XPs disabled)

O Resuls | |y Messages

name {No column name)
John Craft E
Arnie Bastof
Mag Gilmand
Chris Ryan
Adan Griff
Marty Faust
Celine Biceau
Carl Sagan
name {No column na
John Crafi
Armie Bastoft A
Mag Gilmand A
Chris Ryan France
Adan Griff SA
Marty Foust
Celine Bice.
Carl Sagan
Lesbe Bren.

E AR N R

Lo @ N OB e LN =

n Palink, bian

& Query executed successfully.

([}

{local) (12.0 RTM) NIKOSSCSLAPTOP\nikos (52) bookdb 00:00:00 58 rows

The query method can, of course, return XML fragments, so it is not bound by the same
restrictions as the value method. We may want to find all the languages a book has been
translated into and have them as XML. The following statement does that. Well, almost.

SELECT title, translations.query('for Sl in //Translation/@Language
return element Language {data(SI)}")

FROM edition, book
WHERE book = book.id

The problem is that a book may have many editions and thus the result would be one row

per edition:

20

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

Misty Nights <Language>German</Language>
<Language>French</Language>
<Language>Russian</Language>

Archeology in Egypt <Language>Swedish</Language>
<Language>French</Language>

Archeology in Egypt <Language>Swedish</Language>
<Language>French</Language>
<Language>Chinese</Language>

Archeology in Egypt <Language>French</Language>
<Language>Turkish</Language>
<Language>Spanish</Language>

We could, of course, correct this by first merging all the translations of every book's editions,
or by nesting in some practical way. Here is an example.

SELECT title, (SELECT translations.query('for Sl in //Translation/@Language
return element Language {data(Sl)}")
FROM Edition
WHERE book = book.id
FOR XML PATH ("), TYPE)
FROM book

This will, of course, return duplicates if two different editions have been translated into the
same language and the DISTINCT keyword is not allowed when XML columns are involved.
Using distinct-values in the XQuery expression would not help either, since it works with one
edition at the time. But we could add a second XQuery expression on the result (which is
XML since we used the keyword TYPE):

SELECT title, (SELECT translations.query('for Sl in //Translation/@Language
return element Language {data(Sl)}")
FROM Edition
WHERE book = book.id
FOR XML PATH ("), TYPE).query('for Sl in distinct-values(//Language)
return element Language {SI}')
FROM book

The result is now perfect:

Archeology in Egypt <Language>Swedish</Language>
<Language>French</Language>
<Language>Chinese</Language>
<Language>Turkish</Language>
<Language>Spanish</Language>

Contact <Language>Swedish</Language>
<Language>German</Language>
<Language>Russian</Language>

21

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

If you feel that the previous statement is too complex, then try the following statement.

SELECT title, T.x.query('for Sl in distinct-values(//@Language)
return element Language {SI}')
FROM book CROSS APPLY (SELECT translations
FROM edition
WHERE book = book.id
FOR XML RAW, TYPE) AS T(x)

The use of the keywords CROSS APPLY allows us to use a column from the table book inside
the nested statement that creates the table T (with column x). So what this does, is that it
takes the translations of the editions of the current book and merges them into one XML.
This XML can then be queried and it contains all the languages of all the editions.

4.2.2 Method exist

The method exist can be used to check if a particular XQuery expression (in most cases an
XPath expression) has a non-empty result. We could, of course, use the method value or the
method query and then add an SQL predicate on the result, but the method exist is far more
convenient. We may want to find all the authors from Sweden. The following statement has
a condition that does exactly that.

SELECT name
FROM author
WHERE info.exist('//*[Country="Sweden"]') = 1

What the condition says, is that there must exist a node that has a subelement Country with
the value "Sweden". The result of the method is 1 if true and 0 if false. The result has two
rows:

Jakob Hanson
Marie Franksson

The condition could, of course, be written in many ways. All the following are equivalent (in
this case):

info.exist('//Country[.="Sweden"]') = 1
info.exist('//Country[text()="Sweden"]') = 1
info.exist('/Info/Country[text()="Sweden"]') = 1
info.exist('/Info[Country="Sweden"]') = 1
info.value('(//Country)[1]', 'VARCHAR(20)') = 'Sweden'

22

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

4.2.3 Method nodes

The method nodes can be used to create a relational table from an XML sequence. Each
node in the sequence becomes one row in the resulting table. We could, for example, use
the following statement to retrieve books that have been translated into Swedish.

SELECT DISTINCT title
FROM book, edition
WHERE book = book.id
AND 'Swedish' IN (SELECT x.value(".", "'VARCHAR(20)")
FROM translations.nodes('//@Language') AS C(x))

The method nodes creates a table where each row is a Language attribute node. This table is
given the alias T with column name x. We then use the value method on x to retrieve the
value of the node as a VARCHAR so that it can be compared to 'Swedish'. This would of
course be a very complex way to solve this particular problem, which can be solved with the
following statement instead:

SELECT DISTINCT title

FROM book, edition

WHERE book = book.id

AND translations.exist('//Translation[@Language = "Swedish"]')=1

A more suitable situation for the method nodes is the following. Let's get the translations of
each book.

SELECT title, year, x.query('.")
FROM book, edition CROSS APPLY translations.nodes('//Translation') AS Translation(x)
WHERE book = book.id

Here we use the keywords CROSS APPLY in order to use the column translations directly in
the FROM clause and generate the table Translation. The result of the method nodes is a
table where each row is a reference to a node in the original XML object. The generated
column can therefore not be used directly. We use the method query in order to retrieve a
new XML value. The result looks like this:

Misty Nights 1987 <Translation Language="German" Publisher="Kingsly" Price="130" />
Misty Nights 1987 <Translation Language="French" Publisher="Addison" Price="135" />
Misty Nights 1987 <Translation Language="Russian" Publisher="Addison" Price="125" />

Archeology in Egypt 1992 <Translation Language="Swedish" Price="340" />

Archeology in Egypt 1992 <Translation Language="French" Price="320" />

Archeology in Egypt 1994 <Translation Language="Swedish" Publisher="KLC" Price="390" />
Archeology in Egypt 1994 <Translation Language="French" Publisher="KLC" Price="330" />
Archeology in Egypt 1994 <Translation Language="Chinese" Publisher="Shou-Ling" Price="280" />
Archeology in Egypt 1999 <Translation Language="French" Publisher="KLC" Price="320" />
Archeology in Egypt 1999 <Translation Language="Turkish" Publisher="Turk And Turk" Price="300" />
Archeology in Egypt 1999 <Translation Language="Spanish" Price="300" />

23

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

We can, of course, shred this further and get the language, publisher and price as columns:

SELECT title, year, x.value('@Language', 'VARCHAR(20)'),

x.value('@Publisher', 'VARCHAR(30)'), x.value('@Price’, 'INTEGER')
FROM book, edition CROSS APPLY translations.nodes('//Translation') AS Translation(x)
WHERE book = book.id

The result looks like this:

Misty Nights 1987 German Kingsly 130
Misty Nights 1987 French Addison 135
Misty Nights 1987 Russian Addison 125
Archeology in Egypt 1992 Swedish NULL 340
Archeology in Egypt 1992 French NULL 320
Archeology in Egypt 1994 Swedish KLC 390
Archeology in Egypt 1994 French KLC 330
Archeology in Egypt 1994 Chinese Shou-Ling 280
Archeology in Egypt 1999 French KLC 320
Archeology in Egypt 1999 Turkish Turk And Turk 300
Archeology in Egypt 1999 Spanish NULL 300

We could, of course, use XQuery to return "N/A" instead of NULL when the Publisher
attribute is not present:

SELECT title, year, x.value('@Language', 'VARCHAR(20)'),
x.value('if (empty(@Publisher)) then "N/A" else string(@Publisher)', "'VARCHAR(30)'),
x.value('@Price', 'INTEGER')
FROM book, edition CROSS APPLY translations.nodes('//Translation') AS Translation(x)
WHERE book = book.id

SQL Server does not like mixing attribute nodes with literals so we use the XQuery function
string.

4.2.4 Method modify

The method modify can be used to perform DML operations similar to SQL's INSERT, DELETE
and UPDATE on XML. This method accepts three kinds of expressions: insert, delete, replace
value of. We discuss these expressions further in section 0.

24

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

4.3 DML for XML

In order to manipulate XML with operations similar to SQL's INSERT, DELETE and UPDATE,
we need to use the XML method modify. The method itself is designed in such a way that it
is valid in a context where an assignment is expected. So it cannot be used inside a SELECT
statement. But it can be used in the SET clause of an UPDATE statement. If we would like to
modify in some manner Carl Sagan's info XML we would use the following statement:

UPDATE author
SET info.modify('modify-expression')
WHERE name = 'Carl Sagan'

The method modify actually affects the object on which it is called, so the modification is
made to the value in the column. The method modify does not return anything (and that is
why it cannot be used in any other context).

There are three types of expressions that can be used as the method's parameter. The
following sections give some examples of them.

4.3.1 insert

An insert expression can be used to add new nodes. The new nodes can be added before or
after a particular node (as siblings), or as the first or last children of a particular node. We
could for example add a Website element as the last child element of the info element in
Carl Sagan's info XML. This would, of course, violate the XML Schema, but we can ignore that
right now. Here is the statement that performs the update:

UPDATE author
SET info.modify('insert element Website {"www.carlsagan.com"} as last into (/Info)[1]")
WHERE name = 'Carl Sagan'

As usual in SQL Server, when an XPath expression must statically give a single node, we use
the predicate [1]. The new element node will become the last child node of the (first) Info
element. The new node doesn't have to be constructed. It can be specified in its serialized
form. So the following would have the exact same effect:

UPDATE author
SET info.modify('insert <Website>www.carlsagan.com</Website> as last into (/Info)[1]")
WHERE name = 'Carl Sagan'

If we would prefer to add the Website element immediately after the Email element, then
we could use the following instead:

UPDATE author
SET info.modify('insert <Website>www.carlsagan.com</Website> after (/Info/Email)[1]')
WHERE name = 'Carl Sagan'

The new element node becomes the next sibling to the node identified by the XPath
expression after the keyword "after".

25

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

4.3.2 delete

To remove one or more nodes, a delete expression can be used. The delete expression
deletes any node matching a specified XPath expression. So if the XPath expression doesn't
match any node, the XML value will be unaffected. We could perhaps remove the Email
element from Carl Sagan's info XML:

UPDATE author
SET info.modify('delete /Info/Email')
WHERE name = 'Carl Sagan'

This removes the element node, while the following would instead remove the text node
leaving an empty Email element:

UPDATE author
SET info.modify('delete /Info/Email/text()")
WHERE name = 'Carl Sagan'

Carl Sagan's info XML would look like this after the previous statement:

<Info>
<Email />
<Country>USA</Country>
<YearOfBirth>1913</YearOfBirth>
</Info>

If you want to restore Carl Sagan's info XML to the original value, use the following
statement:

UPDATE author

SET info = '<Info><Email>carlsagan@nasa.gov</Email><Country>USA</Country>
<YearOfBirth>1913</YearOfBirth></Info>'

WHERE name = 'Carl Sagan'

4.3.3 replace value of

In some cases, we may want to change the value of a particular node, instead of removing it
and creating a new one. The expression "replace value of" lets us identify a node and
provide a new value for it. We can, for instance, change Carl Sagan's e-mail:

UPDATE author
SET info.modify('replace value of (/Info/Email/text())[1] with "carl@sagan.info"')
WHERE name = 'Carl Sagan'

The XPath expression must be statically a single node, so we use the predicate [1]. In most
cases the node must be a text node or an attribute node.

26

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

4.4 XQuery functions

SQL Server does not support so many of the functions defined in the XQuery standard. Refer
to the documentation in order to see which functions are supported. SQL Server adds two
extra XQuery functions that make it possible to pass SQL context values to the XQuery
context. These two functions are described in this section.

4.4.1 sql:column

The function sql:column can be used inside an XQuery statement in order to access a column
available in the SQL context that initiated the XQuery statement. We could, for example,
create an XML document per author where we have the name and country as attributes:

SELECT info.query('let Sc := //Country/text()
return element Author {attribute Country {Sc},
attribute Name {sql:column("name")}})
FROM author

The XQuery statement accesses the name of the current author from the SQL context with
the function sqgl:column. We construct the attributes in the return clause because SQL Server
does not support computed constructors in the let clause. The result of the previous
statement has one row per author and one column containing the XML document:

<Author Country="England" Name="John Craft" />
<Author Country="Austria" Name="Arnie Bastoft" />
<Author Country="Australia" Name="Meg Gilmand" />
<Author Country="France" Name="Chris Ryan" />

4.4.2 sql:variable

The function sgl:variable is similar to sqgl:column, but is relevant in T-SQL when we execute a
block that has variables. Here is an example:

DECLARE @x XML

SET @x ="
DECLARE @val INTEGER
SET @val =2

SELECT @x.query('for Sein (1,2,3,4,5,6,7,8,9,10)
let Sn := sqgl:variable(" @val")
return element Math {Sn, "*", Se, "=", Sn*Se}')

We create an empty XML value just so that we can call the method query which we can use
to execute XQuery. In the XQuery statement we retrieve the variable @val from the SQL
context and place it (its value) in the XQuery variable $n. The for clause loops through the
sequence and for each value of Se a Math element is produced. SQL Server does not support
sequence construction with the keyword "to", so we cannot use (1 to 10). The result is the
following XML fragment:

27

Introduction to SQL Server and XML version 1.3 December 2016 nikos dimitrakas

$2 * 1 = 2$
$2 * 2 = 4$
$2 * 3 = 6$
$2 * 4 = 8$
$2 * 5 = 10$
$2 * 6 = 12$
$2 * 7 = 14$
$2 * 8 = 16$
$2 * 9 = 18$
$2 * 10 = 20$

The following example is not supported, since SQL Server does not support variable node
names in computed constructors:

DECLARE @x XML
SET @x ="
DECLARE @en VARCHAR(10)
SET @en = 'Number'
SELECT @x.query('for Snin (1,2,3)
return element {sql:variable("@en")} {Sn}')

The function sql:variable is quite limited. It may only contain a single value and may only be
used in specific contexts.

5 Epilogue

SQL Server has chosen not to implement the XML functionality described in the latest SQL
standards. Instead, there are several SQL Server specific extensions to SQL that can be used
to produce the same results. In some cases the SQL Server specific solutions are simpler,
while in other cases they are more complex. Either way, it is uncertain how long it will take
before SQL Server implements the functionality described in the SQL standard. All the XML-
related keywords from the SQL standard are considered reserved words for future use. SQL
Server also has features that complement the SQL standard. Maybe some of them will be
incorporated in the coming versions of the SQL standard. SQL Server's support for XPath and
XQuery is also quite limited. Hopefully, coming versions will support more functions, axes,
operators and other features not yet supported. SQL Server 2016 has according to the
release notes not modified any functionality relating to XML since the two previous versions
(SQL Server 2012 and SQL Server 2014).

| hope you have found this introduction educational and fun. Do not hesitate to send
comments and suggestions that may help improve the next version of the compendium!

The Author
hos dimitral

28

